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ABSTRACT
We present a low cost method to measure and characterize
the end-to-end latency when using a touch system (tap la-
tency) or an input device equipped with a physical button.
Our method relies on a vibration sensor attached to a finger
and a photo-diode to detect the screen response. Both are
connected to a micro-controller connected to a host computer
using a low-latency USB communication protocol in order
to combine software and hardware probes to help determine
where the latency comes from. We present the operating prin-
ciple of our method before investigating the main sources of
latency in several systems. We show that most of the latency
originates from the display side. Our method can help appli-
cation designers characterize and troubleshoot latency on a
wide range of interactive systems.
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INTRODUCTION
Any interactive system exhibits some delay between a user’s
action and the corresponding system response, known as the
end-to-end latency. This latency is caused by many factors
pertaining to the input device, the operating system (e.g. de-
vice drivers, control and communication policies), the soft-
ware toolkits and application used, as well as the output de-
vice. Depending on its amount and variation over time (jit-
ter), the end-to-end latency can degrade the action-perception
loop, impact user performance and make the system feel less
responsive and interactive.

Latency has long been known to affect performance and
user perception in indirect pointing tasks, Virtual Reality and
touch interactions [1, 8–10, 12, 13, 16, 21]. While today’s
touchscreens show latencies ranging from 50 to 200 ms [14],

it is known that users can perceive touchscreen latency as low
as 2 ms [14] and that performance for dragging tasks degrades
above 25 ms [10]. In indirect interaction, latencies above
50 ms are noticed and affect performance [8, 9].

Considering the importance of latency in interactive systems,
it is essential to measure and report it, to assess how it af-
fects users or the results of an experiment. Until recently,
its measure has been a tedious process based on the use of
external cameras [11, 14, 15, 18–21] but methods have been
proposed to ease the process through interactive tools [2, 6]
or repeated measures [3, 7]. These tools can be used to try to
reduce latency but it can be a trial and error process without
the understanding of the influence of each part of a system.
In addition, none of the measurement tools allows to measure
end-to-end latency while a user interacts with the system, and
existing tools are limited to specific technologies.

We propose a new measurement method that consists in at-
taching a vibration sensor to the user’s finger to determine

Figure 1: The hardware part of our method comprises a vibration sensor
mounted on the finger to measure when a surface is touched or when
a physical button is pressed, and a photo-diode to determine when the
screen is updated.
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when she taps a surface or presses a button, using a photo-
diode to determine the screen response, and combining these
two hardware probes with software ones through a low-
latency communication protocol (Figure 1). The proposed
combination of hardware and software provides a detailed
picture of latency with contributions of different system lay-
ers exposed.

The main contributions of this work can be summarized as
follows:

• the first lightweight method to measure latency while users
are interacting with arbitrary applications, whereas existing
methods require them to perform specific tasks;

• the ability to measure it on the wide range of interactive
systems that include a touch sensor (tap latency) or a phys-
ical button;

• the combination of hardware and software probes at differ-
ent levels to better understand where latency comes from;

• the measurement of latency and jitter on different oper-
ating systems with different GUI toolkits which provides
insights on their inner workings and can help application
designers make informed choices.

The remaining of the paper is organized as follows: after dis-
cussing some related works, we present the proposed method
and its implementation. We then describe the measures we
performed with it on different interactive platforms, and con-
clude with a discussion of our results.

RELATED WORK
Our review of the related work first covers the human factors
related to end-to-end latency before detailing existing mea-
surement methods.

Human factors related to end-to-end latency
End-to-end latency has a detrimental impact on perception
and performance in both direct and indirect interaction.

Pavlovych and Stuerzlinger evaluated the influence of laten-
cies of 33, 58, 83, 108 and 133 ms on a mouse-based pointing
task with targets as small as 14 pixels and observed an in-
creasing drop of performance above 58 ms [15]. In a similar
task with targets as small as 12 pixels, Teather et al. observed
a 15% performance drop between 35 and 75 ms [20]. Deber
et al. studied the minimal perceivable latency with indirect
touch devices and found a JND of 55 ms for dragging and
96 ms for tapping [8]. They have also shown that improve-
ments in latency as small as 8.3 ms are noticeable from a
wide range of baselines, particularly when dragging. Overall,
these results suggest that latency above 50 ms impacts users’
perception and performance in indirect interactions.

Direct interaction is even more affected by end-to-end la-
tency, as users can more easily notice the physical distance
between their finger and the system’s output [8]. Jota et al.
showed that users are able to perceive latency in response
to tapping above 24 ms [10]. For dragging tasks, Ng et al.
showed that latencies as small as 6 ms are perceivable [14],
while Jota et al. showed that performance is affected above

25 ms [10]. For direct input systems using a stylus, Ng et al.
reported perception limits of 2 ms for dragging and 6 ms for
scribbling [13]. Overall these results indicate that even a few
milliseconds of latency can be perceived in direct interaction,
and that performance starts being affected at about 25 ms.

Techniques for measuring latency
The most common approach to measure end-to-end latency is
to use an external camera to record both the physical action of
the user on the input device and the corresponding on-screen
response [2, 11, 14, 15, 17–21]. This is a tedious and time
consuming process as the experimenter has to record a video,
preferably using a high frame rate camera, to play it back
frame by frame to match pairs of events such as the hand and
an on-screen object changing direction, and then count the
number of frames between the two events to get one measure
of latency. Good measurements require careful camera place-
ment and lighting conditions. See Casiez et al. for a detailed
review of the relevant literature [3].

Bérard & Blanch proposed a “low overhead” approach for
touch screens that consists in asking users to follow a target
moving at a constant speed along a circular path with their
finger, motion latency being determined by the on-screen dis-
tance between the moving target and touch feedback [2]. The
reported precision of this method is 4 ms but as the authors
acknowledge, it requires significant training. Cattan et al. [5]
proposed an alternative approach that requires users to per-
form straight line trajectories at a constant speed of their
choice while tuning the latency used by a linear prediction
model until they observe the best match between the position
of their finger and that of a visual feedback. They reached a
precision of 2 ms and their method was overall preferred over
that of Bérard & Blanch by participants. These two meth-
ods have the merit to require no external hardware, but both
require user training.

Deber et al. proposed a hardware solution to simulate touch
events and detect the system’s visual response [7]. The pro-
posed tool uses a mechanical relay attached to a brass contact
to trigger capacitive touch events and a photo-diode to detect
screen brightness changes. The system allows for repeated
measures of end-to-end latency for tap actions, but does not
allow one to determine where the latency comes from and
only works with capacitive touch screens.

Casiez et al. measured the end-to-end latency of desktop
computer systems using an unmodified optical mouse posi-
tioned on the screen and displaying a moving pattern [3]. The
pattern displacement fools the mouse sensor which results in
controlled mouse events. End-to-end latency is determined as
the time between a pattern displacement and the correspond-
ing mouse event. As time measurements are done by the host-
computer itself, this method allows to insert software probes
at different places in the system. Measures on different oper-
ating systems with different GUI toolkits showed that most of
the latency comes from the hardware, with no further insight
on its exact causes or sources, and that the GUI toolkit can
have a significant impact on it.



The WALT project1 uses a special stylus equipped with an
accelerometer to measure input latency, defined as the time
from the moment a finger-like probe touches down on the
screen until the kernel timestamps an action down event. The
pen is considered to contact the surface when the accelerom-
eter senses a shock above 3 g. Output latency is measured
using a different setup. Our technique uses a simpler design
and allows the user to interact using her finger. Microsoft
Hardware Recommendation’s for original equipment manu-
facturers2 also describes a method to measure input latency
using a piezo microphone mounted on the touch surface. It is
subject to the delay between the actual contact and the time
the wave reaches the microphone and may be subject to ambi-
ent noise. Overall these two projects do not allow to measure
end-to-end latency and characterize it in a single operation.

Our two main goals are to extend previous work by measur-
ing latency while a user is interacting with a variety of de-
vices, using hardware and software probes at different levels.
Bérard et al. and Cattan et al. used interactive approaches
that require users to perform specific tasks [2,6]. Casiez et al.
used software probes but no hardware ones [3]. Deber et al.’s
method allows repeated measures on capacitive touchscreens,
but on these devices only, and not while a user is interacting.

PROPOSED METHOD AND IMPLEMENTATION
Our method builds on previous ones introduced by Bérard
et al., Deber et al. and Casiez et al. It combines hardware
parts with specific software. The hardware parts were chosen
and assembled in order to be as unobtrusive as possible and
compatible with a variety of interactions. Instead of asking
users to do something special we decided to equip their finger
to detect when interaction occurs, and to use a photo-diode
(like Deber et al.) to detect the system response. Like Casiez
et al., we decided to use software probes, but we also de-
cided to combine them with hardware ones using low-latency
communications between our hardware solution and the host
computer. All these elements taken together allow us to per-
form latency measures that no one has ever done before.

The hardware side of our implementation3 mainly consists
in an Arduino Leonardo connected to a vibration sensor at-
tached to the user’s finger and a photo-diode placed on-
screen, for a total cost of less than $35. The rest of this section
explains how these hardware elements are used in combina-
tion with software probes to implement the proposed method.

Input (finger touch/press) detection
We use a vibration sensor (a MiniSense 1004). The sensor is
made of a flexible PVDF piezoelectric polymer film loaded
with a mass which bends it with inertia. It is glued on an
elastic ring that one can comfortably wear when interacting
with a touch surface, a keyboard or another button-equipped
device as it leaves the pulp of the finger free. When a shock
1https://github.com/google/walt
2https://msdn.microsoft.com/en-us/library/windows/hardware/
dn293768(v=vs.85).aspx
3Additional information to replicate the hardware available at
http://ns.inria.fr/mjolnir/lagmeter
4http://www.te.com/usa-en/product-CAT-PFS0011.html

occurs, e.g. when tapping a screen or pressing a button, the
mass bends the sensor’s film due to acceleration. This results
in strain that creates a piezoelectric response which in turn
can be detected as a change of voltage across the electrodes
of the sensor. Acceleration can of course also result from
movements alone, which makes it necessary to carefully pro-
cess the sensor’s signal to discriminate between true-positive
(i.e. shocks related to interaction) and false-positive.

The vibration sensor signal first goes through an RC high-
pass filter, the capacitor being the piezo sensor itself and the
resistor being attached in parallel to it. We use a 1MΩ re-
sistor giving a cutoff frequency around 650 Hz. This signal
then goes to an interrupt pin of the Arduino micro-controller
configured to detect rising edges. An optional amplification
circuit composed of an LM311 voltage comparator allows ad-
justing the sensitivity of the sensor by adapting the voltage
threshold required to trigger the interrupt. The threshold is
adjusted with a potentiometer in a voltage divider circuit. An
additional PNP transistor protects the comparator output from
the influence of the Arduino GPIO impedence.

We define the response time of this input detector as the time
between the user action (contact on a surface, or button press)
and the first interrupt pin trigger. The voltage threshold in-
fluences both the response time and accuracy of the detec-
tor. With a low threshold, the response time is short, but
false-positive input might be detected when the finger is sim-
ply moving. Higher thresholds reduce the number of false-
positives but increase the response time, and at some point,
true-positives might not always be detected. Adjusting the
voltage threshold thus consists in finding a good trade-off
between a short response time and a low number of false-
positives while preserving a high number of true-positives.

We measured the response time of our detector by using it
while tapping a copper plate with a finger wrapped with alu-
minum foil (Figure 2). The copper plate and aluminum foil
were connected through a resistor to another interrupt of the
Arduino (rising edge interrupts trigger above 1.5V). We per-
formed 200 measures using the amplification circuit with dif-
ferent voltage thresholds (0.5, 1.0 and 1.5V) with moderate
and stronger taps. A tap was considered "moderate" when
the experimenter tapped as she would normally do on a touch
surface and taps were "stronger" with more force than nor-
mal. Taps were done with the hand naturally posed on the
desk and using finger pad. We also performed measures with-
out the amplification circuit. Results are summarized in Table
1 showing that the response time increases with higher refer-
ence voltages. We observed few false-positives, and none for
a voltage of 1.5V or no amplification. Overall the standard
deviation is low, between 0.2 and 0.6 ms for the measures
with no false-positive. Signal bounces were often observed,
with a maximum time between the first and last interruption
of 6.2 ms.

Finally, we measured the time corresponding to the begin-
ning of interaction with physical buttons. Compared to touch
surfaces, buttons consist of several mechanical parts. When
pressing a computer mouse button, for example, the user first
impacts the plastic casing and the plastic pivots on its hinge.

https://github.com/google/walt
https://msdn.microsoft.com/en-us/library/windows/hardware/dn293768(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/dn293768(v=vs.85).aspx
http://ns.inria.fr/mjolnir/lagmeter
http://www.te.com/usa-en/product-CAT-PFS0011.html
http://www.st.com/content/ccc/resource/technical/document/datasheet/2d/22/50/0e/7e/39/43/64/CD00001072.pdf/files/CD00001072.pdf/jcr:content/translations/en.CD00001072.pdf
http://www.diodes.com/_files/datasheets/ZXTP25020CFF.pdf


Ref V mean std max #fp

0.5V 1.4 µs 1.4 µs 12.6 µs 3
1.0V 1.6 µs 4.8 µs 66.0 µs 8

1.5 V 3.8 ms 0.6 ms 6.6 ms 0

no amplification 5.7 ms 0.2 ms 6.6 ms 0

Table 1: Response times of the vibration sensor for threshold values be-
tween 0.5V and 1.5V and when the amplification circuit is bypassed. The
rightmost column shows the number of false-positives detections. Each
line was computed over 200 samples.

The plastic then hits the real internal switch, moves it and
the contacts inside the switch touch each other, finally reg-
istering an electronic signal. To clarify when the sensor pin
triggers, we put copper tape on the plastic button and wrapped
a finger with aluminum foil. The copper tape, mouse button
and aluminum foil were connected through resistors to dif-
ferent interrupts of an Arduino Leonardo to measure (1) the
time the finger contacts the plastic case, (2) the time the but-
ton is triggered and (3) the time the sensor pin triggers. (2) -
(1) was about 1.5 ms. Also the sensor starts triggering about
5 ms after the button is pressed down, corresponding to the
measures we obtained with the copper plate. This confirms
the sensor pin triggers when the button is pressed down. A
typical response from the sensor is available in the Appendix.
It clarifies that the vibration sensor is designed to detect hard
contacts: finger contacting a surface or button pressed down.

Output (screen response) detection
The screen response is detected through a change in its bright-
ness, ideally from black to white. This part of our setup is
similar to that of [7]: we use a PDB-C156 photo-diode with
a flat-sided package that can be tapped on a display and has
a fast and consistent response time with good visible light
sensitivity. In contrast with [7], instead of reading the raw
analog signal with an ADC, we use another LM311 voltage
comparator to trigger an interrupt and adjust the sensitivity
with a potentiometer in a voltage divider circuit. We also did
not observe the problems of noise reported in [7].

We define the response time of this output detector as the time
between the brightness change and the first interrupt pin trig-
ger. We measured it with a white LED placed in front of the

Figure 2: The vibration sensor response time was measured by using it
while tapping a copper plate with a finger wrapped with aluminum foil.

photo-diode and wired to an STM32 micro-controller with a
higher temporal resolution than the Arduino (12 ns vs 4 µs).
With the best threshold tuning, we obtained an average re-
sponse time of 3.9 µs (std = 0.02 µs) without signal bounce
for 1000 repetitions. We do not report the threshold value
because it depends on the screen luminosity. With a poor tun-
ing, the mean response time goes up to around 20 µs, which
is still far below the millisecond. The response time of our
output detector is thus disregarded in what follows.

Communication with the host computer
Connecting our input and output detectors to the same Ar-
duino board provides an efficient way to measure the end-to-
end latency of a system, but we wanted to complement this
approach with software probes as those from [3]. To the best
of our knowledge, there is no robust solution for synchro-
nizing a micro-controller clock with that of a host computer.
Instead of trying to synchronize clocks and log hardware and
software events separately, we investigated ways to efficiently
exchange information between the Arduino and the host com-
puter, in order to log all events at a unique place.

The Arduino Leonardo we use supports raw HID communi-
cation at 1000 Hz. To evaluate the temporal cost of a com-
munication, we performed repeated measures of round trip
exchanges between the host computer and the Arduino, using
HIDAPI5. The data consisted in 64 bytes reports made of ran-
dom data and elapsed by 100 ms. Measurements (n = 1000)
were made on a MacBook Pro Retina 15-inch from mid 2014
with three different operating systems with no other applica-
tion running (Table 2). The round trip time was on average of
1.2 ms, with a maximum value of 2 ms. The normal time for
sending a report from the Arduino to the host computer can
thus be reasonably estimated to 1 ms.

mean std max

Windows 10 1.3 ms 0.3 ms 1.8 ms
macOS 10.12 1.4 ms 0.3 ms 2.0 ms
Ubuntu 16.04 0.9 ms 0.2 ms 1.9 ms

Table 2: Round-trip time between the host computer and the Arduino
using Raw HID at 1000 Hz. All measures were made on the same com-
puter.

We investigated how the system load can affect the round trip
time. We simulated different loads on macOS 10.12 using
the stress utility6 with increasing numbers of CPU, IO and
memory allocation processes: CPU=2, IO=5, VM=1 for a 25%
load; CPU=4, IO=10, VM=2 for 50%; CPU=6, IO=15, VM=4 for
75%; and CPU=8, IO=20, VM=8 for 100%. These new measure-
ments (n = 1000) showed little impact of the system load on
the average and standard deviation of the round trip time (Ta-
ble 3). Although some measures went as high as 10 ms, most
remained below 2.0 ms. In a worst-case scenario, the time for
sending a report from the Arduino to the host computer can
thus be reasonably considered below 5 ms.

5http://www.signal11.us/oss/hidapi/
6http://people.seas.harvard.edu/~apw/stress/

http://advancedphotonix.com/wp-content/uploads/PDB-C156.pdf
http://www.st.com/content/ccc/resource/technical/document/datasheet/2d/22/50/0e/7e/39/43/64/CD00001072.pdf/files/CD00001072.pdf/jcr:content/translations/en.CD00001072.pdf
http://www.st.com/en/evaluation-tools/stm32f4discovery.html
http://www.signal11.us/oss/hidapi/
http://people.seas.harvard.edu/~apw/stress/


mean std 95th percentile max

< 5% 1.4 ms 0.3 ms 1.9 ms 2.0 ms
25% 1.2 ms 0.6 ms 1.6 ms 9.3 ms
50% 1.3 ms 0.7 ms 2.1 ms 7.6 ms
75% 1.2 ms 0.4 ms 1.6 ms 4.5 ms
100% 1.3 ms 0.6 ms 2.0 ms 6.5 ms

Table 3: Impact of the system load on the round-trip time between the
host computer and the Arduino on macOS.

Given the above results, Raw HID clearly seemed a very good
way to exchange information between the Arduino and the
host computer. In our implementation, when an interrupt is
triggered, the Arduino sends a raw HID report encoding the
event type (vibration-sensor or photo-diode) and a timestamp
obtained using the micros7 function, with 4 µs resolution.
We debounce the vibration sensor’s signal by ignoring inter-
rupts for 200 ms after the first interruption. This threshold is
over conservative and could certainly be adjusted, given that
we measure a maximum value of 6.2 ms between the first and
last trigger of the piezo interrupt. No debouncing is done for
the photo-diode as it does not seem necessary.

Inserting probes in the system
Our software probes consist of callback functions registered
at different places. Each callback logs a timestamp and infor-
mation available at the corresponding observation point. Fig-
ure 3 shows the conceptual event sequence that our probes
can record.

When user action is detected through the vibration sensor,
the Arduino notes the time of this piezo event and forwards it
to the host computer in a raw HID report. This report is re-
ceived through HIDAPI by the computer which logs the event
and the time of its arrival according to its own clock. If the
input device in use is an HID pointing one (e.g. mouse or
touchpad), we can use libpointing8 [4] to read the device’s
report and log the information it contains. It might also be
possible to log the system’s low-level event generated in re-
sponse to user input, e.g. using Quartz event taps on macOS.
At some point, the input event is delivered to the application
by a toolkit, e.g. through a callback or a listener mechanism.

Upon reception of the input event, the application updates
its internal state and repaints one or more of its windows.
This is the time were we can repaint a specific window of
ours over which the photo-diode is placed. On some sys-
tems, it might be possible to know when it is logically done
and the screen is ready to be physically updated, e.g. us-
ing CGRegisterScreenRefreshCallback on macOS. The actual
screen update is detected through the photo-diode by the Ar-
duino which again notes the time of this event and forwards
it to the host computer in a raw HID report. Like for the ini-
tial piezo event, this report is received through HIDAPI by
the computer which logs the event and the time of its arrival
according to its own clock.

7https://www.arduino.cc/en/Reference/Micros
8http://libpointing.org

The end-to-end latency of the system can be computed in two
ways by subtracting the piezo time from the photo-diode time
using either the Arduino clock values or those of the host
computer. When using the host computer clock values, la-
tency can be further characterized by looking at the recorded
times for the various software probes. Note that the list of
software probes given above is by no means exhaustive and
could be extended based on other system or toolkit services.

MEASURES
Unless stated otherwise, the reported measures were per-
formed using the aforementioned MacBook Pro running ma-
cOS 10.12. Toolkits used were Qt 5.8 and freeglut 3.0, ref-
erenced as GLUT. Timestamps were created on host comput-
ers with millisecond or sub-millisecond precision, e.g. us-
ing gettimeofday. We used specific applications show-
ing a black background that switched to white upon “touch
down” or “mouse button down” events and back to black upon
“touch up” or “mouse button up”. The CPU load was kept
minimal, below 5%. Each of the analysis presented below is
based on at least 150 valid blocks, i.e. sequences of events
logged on the host computer starting with piezo and ending
with photo-diode.

The photo-diode was always positioned at the center of the
display and the vibration sensor was used with the amplifi-
cation circuit bypassed. We made this choice to ease future
replication (this circuit is optional) and because the response
time for this setting is comparable to an amplification of 1.5 V
and its variance is low (5.7 ms and 0.2 ms, see Table 1). By-
passing the amplification circuit renders the potentiometer in-
operable, which makes it impossible to inadvertently change
the detector configuration during measurements. Without am-
plification, we of course increase the chances of not detecting
the piezo signal, but such trials can be simply discarded when
analyzing the logs.

The presented end-to-end latencies were computed by sub-
tracting the piezo time from the photo-diode time using either
the Arduino clock values (end-to-end∗ values) or those of the
host computer (end-to-end values) and adding 5.7 ms, the re-
sponse time for the chosen input detector configuration. The
response time of the output detector was disregarded for rea-
sons explained above.

Intermediate latency values were computed by subtracting the
host computer piezo time from the considered event time (lib-
pointing, system, toolkit, repaint or screen), adding 5.7 ms
and further adding 0.7 ms for the initial communication be-
tween the Arduino and the host computer (half the round-trip
time observed on macOS, see Table 2).

Latency using a mouse button
Casiez et al. measured the end-to-end latency on desktop
computers using a mouse and found substantial differences
between the GLUT and Qt toolkits, GLUT showing a latency
of 46.7 ms on average (std 5.3 ms) and Qt showing 66.0 ms
(std 5.1 ms) [3]. We replicated their measures using a wired
Logitech M-BT58 mouse at 125 Hz, similar to the Logitech

https://developer.apple.com/reference/coregraphics/quartz_event_services#//apple_ref/c/func/CGEventTapCreate
https://developer.apple.com/reference/coregraphics/1541774-cgregisterscreenrefreshcallback
https://www.arduino.cc/en/Reference/Micros
http://libpointing.org
http://linux.die.net/man/2/gettimeofday
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Figure 3: Conceptual event sequence between a user action and the system’s response. Events observed by the Arduino and the host computer probes
are shown in italic on the corresponding timelines. Optional probes are shown in dashed lines.

MX310 mouse they used and found a similar end-to-end la-
tency of 67.9 ms (std 4.9 ms) with a Qt 5.8 application dis-
playing a texture. On the exact same computer this shows
that the system upgrade (macOS 10.10 to 10.12) and toolkit
upgrade (Qt 5.7 to 5.8 ) do not seem to have affected latency.

We then measured end-to-end latency using our method,
again using the Logitech M-BT58. We used all the software
probes shown on Figure 3 implemented as asynchronous and
non-blocking callbacks and configured the two toolkits for
double buffer display.

We compared the measurement of about 150 trials with our
two implementations. Table 4 shows the mean and standard
deviation for each probe. Our results are very close to those
obtained in [3]: the differences between measures are below
2 ms with similar standard deviations, providing a first vali-
dation of our method and suggesting there is no difference in
terms of latency between pressing a mouse button and mov-
ing the mouse. The end-to-end latency computed with Ar-
duino clock values (end-to-end∗) is very close (0.1 ms) to
the one computed with those of the host computer (end-to-
end), which also illustrates the efficiency and robustness of
our communication protocol.

About 12 ms elapse between the mouse button press and the
reception of the mouse HID report by the host computer (lib-
pointing event). About 2.5 ms then elapse before the appli-
cation drawing code (repaint). The time between the draw-
ing code and the moment when the screen is ready to be re-
freshed (screen) remains comparable between GLUT (25.3
ms) and Qt (31.6 ms). Strangely, most of the difference be-
tween the two toolkits seems to reside in what comes after this
and before the actual screen change detected by the photo-
diode (end-to-end): 9.7 ms for GLUT and 22.5 ms for Qt.

Influence of HID polling rate
We measured the influence of HID polling rate using our
C++/Qt application and a Logitech G9 mouse, a utility pro-
gram allowing to configure it between 125 Hz and 1000 Hz.
Results are summarized in Table 5. They suggest that the
internals of the G9 mouse are different from the Logitech M-

C++ / GLUT C++ / Qt
mean std mean std

libpointing 12.1 ms 3.3 ms 11.0 ms 2.3 ms
system 12.1 ms 3.4 ms 11.5 ms 2.4 ms
toolkit 12.4 ms 3.5 ms 12.0 ms 2.4 ms
repaint 12.5 ms 3.5 ms 13.5 ms 2.4 ms
screen 37.8 ms 7.5 ms 45.1 ms 3.9 ms

end-to-end 47.5 ms 7.6 ms 67.6 ms 4.0 ms
end-to-end∗ 47.6 ms 7.6 ms 67.6 ms 4.0 ms

Table 4: Comparison between the macOS GLUT and Qt implementa-
tions using a Logitech M-BT58 mouse.

125 Hz 250 Hz 500 Hz 1000 Hz
libpointing 3.3 (2.1) 0.8 (1.3) 0.4 (1.0) 0.6 (0.9)
system 4.0 (2.1) 1.4 (1.3) 1.0 (1.1) 1.1 (1.0)
toolkit 4.6 (2.2) 2.0 (2.0) 1.6 (1.2) 1.7 (1.1)
repaint 6.2 (2.3) 3.7 (2.1) 3.3 (1.2) 3.2 (1.2)
screen 36.7 (4.6) 34.6 (5.2) 34.4 (5.6) 33.3 (5.6)

end-to-end 61.6 (3.9) 59.3 (4.7) 59.0 (5.0) 58.2 (5.1)

Table 5: Influence of input frequency on latency (ms) with a Logitech
G9 mouse on a Macbook Pro and C++/Qt. std are provided in brackets.

BT58 we used: even at 125 Hz, the time to receive the HID
event is only 3.3 ms compared to 11 ms for the M-BT58,
suggesting the G9 took less time to send the USB messages.
Increasing the frequency up to 1000 Hz results in marginal
improvements (less than 4 ms). The gaps between repaint,
screen and end-to-end even further hint at an important con-
tribution of the “drawing and refresh time” to end-to-end la-
tency.

Influence of display frequency
We used a Dell S2716DG monitor capable of refreshing up to
144 Hz to evaluate the influence of display frequency on end-
to-end latency. We performed measures using C++/GLUT
and C++/Qt at 60 and 120 Hz, our macOS system being un-
able to drive the screen at 144 Hz. The Logitech G9 mouse
was used for input, configured at 1000 Hz. Doubling the dis-
play frequency allows to reduce the latency by 15.5 ms with



GLUT and 15.9 ms with Qt. We repeated the measure on
Windows 10 using the same screen at 144 Hz and obtained
comparable results for GLUT with an end-to-end latency of
21.4 ms, but a shorter one for Qt with 23.5 ms. On Windows
10, the time up to repaint was also about 2 ms.

C++ / GLUT C++ / Qt
60 Hz 120 Hz 60 Hz 120 Hz

libpointing 0.4 (1.9) 0.6 (1.0) 0.5 (1.0) 0.4 (1.0)
system 1.0 (2.0) 1.2 (1.1) 1.1 (1.1) 1.0 (1.1)
toolkit 1.7 (2.1) 2.0 (1.2) 1.7 (1.1) 1.7 (1.1)
repaint 1.8 (2.1) 1.9 (1.3) 2.2 (1.2) 2.2 (1.2)
screen 23.5 (4.7) 13.0 (2.5) 30.4 (6.4) 20.6 (3.0)

end-to-end 36.6 (3.6) 21.1 (2.5) 45.5 (6.4) 29.6 (2.7)

Table 6: Influence of display frequency and toolkit (Qt and GLUT) on
latency (ms) with a Logitech G9 mouse on a Macbook Pro with a Dell
S2716DG monitor. std are provided in brackets.
DISCUSSION
In absence of a gold-standard to measure and characterize
end-to-end latency, our method can only be assessed through
the analysis of its inner workings and comparisons with mea-
sures performed using other methods in identical of similar
contexts.

We use timestamps generated by the host computer with mil-
lisecond or sub-millisecond precision, which are recorded
upon the invocation of callbacks. We can assume the time
differences we compute have also millisecond precision at
most. Errors of measure can come from the vibration sensor,
photo-diode and USB communication between the Arduino
and the host computer. Interrupts have latencies of the order
of micro-seconds and the photo-diode response time is 20 µs
at most, a few order of magnitude below what we want to
measure. We have shown that the latency of Raw HID com-
munication is low, below 1 ms. In addition, by comparing the
difference of the piezo and photo-diode timestamps recorded
by the Arduino to the difference of those recorded by the host
computer, we have shown they are very close with a differ-
ence below 0.1 ms. We can thus assume the USB communi-
cation has little impact on the precision of our measures. We
have lastly shown the vibration sensor has a response time of
5.7 ms on average with a small standard deviation (0.2 ms).
Taken together, we can assume our measures have a precision
of the order of 1 or 2 ms, which is below the threshold of what
humans can perceive in different contexts.

Using a computer mouse with hardware and software very
similar to [3], we obtained very close results: the maximum
absolute difference between measured latencies is 1.6 ms.
The results we obtained for the iPhone 6 and iPad Air 2 run-
ning iOS 9.2 are also close to the iPhone 6 and iPad mini
running iOS 8.4 tested by Deber et al. [7], with a difference
of 0.7 ms for the iPhone 6 (see Appendix). This replication
work and the consistency obtained with different measure-
ment methods allows to cross validate the two methods.

The probes we inserted allow to determine the contribution
of different hardware and software parts to end-to-end la-
tency. In our test applications that do nothing else than chang-

ing the background color of their window, the time between
the libpointing and repaint events is typically below 3 ms.
Another application would certainly take some time to pro-
cess the event and update its internal state between these two
events. But overall, our results show that most of the latency
comes from before the libpointing event, or after the repaint
one. We will refer to these two ends as “input latency” and
“output latency” in what follows.

Using a standard 125 Hz optical mouse, we observed an in-
put latency of the order of 12 ms and we have shown it can
go down to less than 2 ms using a 1000 Hz gaming mouse.
Using a 1000 Hz mouse, we have shown the libpointing event
comes about 0.5 ms after the mouse button was pressed, sug-
gesting the vibration sensor is not necessary to measure end-
to-end latency on these devices. For touch, this input latency
is higher, in the range of 14 to 25 ms using native toolkits
on Android devices and around 30 ms for Apple trackpads
(see Appendix). Interestingly, we highlighted that the way
these input devices are treated by the system severely affects
latency, probably because of gesture interpretation.

Most of the end-to-end latency is due to the output latency,
which might come from the GUI toolkit, the operating system
(its graphic subsystem), the graphics card and the physical
screen. Overall the output latency is in the range of 19 to
247 ms across all the measures we performed. We tested both
the internal MacBook Pro 60 Hz display and an external Dell
S2716DG monitor capable of refreshing at 60 and 120 Hz,
using GLUT and Qt applications. On both displays running
at 60 Hz, GLUT presents an output latency of 35.1 ms on the
internal display and 34.8 ms on the external display while Qt
provides an output latency of 54.1 ms on the internal display
and 43.3 ms on the external display. It is not clear where
this difference comes from. On the external display, moving
from 60 to 120 Hz reduces the output latency from 34.8 ms
to 19.2 ms (-15.6 ms) for GLUT and from 43.3 ms to 27.4
ms (-15.9 ms) for Qt. For a given device, operating system
and hardware, choosing the appropriate toolkit is important to
reduce the output latency, as observed on Android. A general
rule to follow is to use native toolkits tailored for the system,
in order to minimize end-to-end latency. WebGL seems a
reasonable alternative for cross-platform development, but it
does not work on all hardware. Other toolkits clearly have
room for improvement. The variability we observed with the
other toolkits emphasizes the importance of our method to
perform systematic investigations in order to make the right
design decisions in terms of latency.

We measured the end-to-end latency on different devices with
applications specifically created for that purpose and that did
not do anything else. The measures obtained can be consid-
ered as “best case scenarios”. Two toolkits showing similar
performance with our method are not guaranteed to remain
comparable with more demanding graphics settings. Addi-
tional measures out of the scope of this paper would be re-
quired to clarify this question.

Our method can be easily used to benchmark existing ap-
plications for which the source code is available. One sim-
ply needs to add a small drawing area in its interface, large



enough to fit the photo-diode (7×5 mm), that would switch
from black to white upon user action. The location of this
area remains to be taken into consideration when interpreting
the results as screens usually update from top to bottom. Such
a setup would allow to study the evolution of latency during
the ecological use of an application, which corresponds to the
latency the user actually experiences. This could be quite dif-
ferent from the latency measured in controlled conditions as
different pieces of code can be called upon user interaction.
The sensor attached to the finger can be a limitation but it still
allows a developer to benchmark an application using real-
istic scenarios. In controlled experiments where latency is a
control variable, our method could be used to check that it re-
mains within a given range and does not confound the results.

Our method allows to measure latency on any touch sur-
face, including non-capacitive ones. IR-based technologies
are typically used on large touch screens and exhibit latency.
The fact of being able to measure on any button-equipped
device allows measuring latency with game-controllers, for
example, where latency is known to affect user experience.

Among all the measures we performed, the lowest end-to-end
latency was 21.1 ms on a desktop using a 1000 Hz mouse, a
120 Hz screen and C++/GLUT, which is below the 50 ms
considered to affect performance in indirect interactions and
can thus be used to perform controlled Fitts’ law experiments,
for example. For touch, the minimum end-to-end latency we
obtained is 48.2 ms on an iPad Air 2 using the Cocoa toolkit
which is well above 25 ms, known to affect performance with
direct interaction.

Other measurement methods could benefit from our design.
For example, the latency Hammer described in [7] could be
adapted to use Raw HID communication as we do to support a
combination of hardware and software probes similar to ours.

CONCLUSION
We developed a new method for measuring end-to-end la-
tency that supports the combination of hardware and soft-
ware probes in a system to determine where the latency comes
from. Our method can be used to measure latency while the
user is interacting with a system, and works with the wide
range of input devices equipped with touch sensors or physi-
cal buttons. The measures we performed on different systems
and toolkits highlight the major role of toolkits and screens
in the end-to-end latency. Our results can help developers
choose an appropriate system and toolkit when developing an
interactive application. Our method also gives them the abil-
ity to check the consequences of the design choices they make
by measuring the end-to-end latency in ecological settings.
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iPhone 6 iPad Air 2 Nexus 10 - Android 5.1.1 MOTO X2 - Android 6.0 Galaxy S7 Edge - Android 7.0
end-to-end end-to-end repaint end-to-end repaint end-to-end repaint end-to-end

native 53.0 (4.0) 48.3 (5.3) 23.7 (3.6) 76.0 (5.5) 25.5 (2.2) 68.5 (4.7) 14.2 (3.2) 67.3 (5.5)
Qt 52.6 (4.0) 73.3 (6.2) 26.5 (3.5) 116.4 (5.6) 15.8 (2.6) 70.8 (6.0) 14.2 (3.0) 75.1 (5.3)
JavaFX 70.4 (7.1) 66.2 (8.3) 29.3 (3.6) 89.6 (7.3) 20.7 (2.3) 69.8 (6.5) 19.6 (3.1) 78.2 (7.0)
Unity3D 66.1 (9.5) 65.8 (9.0) 45.9 (5.2) 116.3 (5.3) 37.2 (4.6) 108.2 (4.6) 33.9 (5.4) 108.3 (5.6)

HTML5 / Canvas 100.8 (6.3) 77.0 (5.2) 28.0 (3.4) 275.9 (17.1) 16.1 (2.5) 61.8 (5.5) 13.6 (3.6) 74.5 (6.2)
HTML5 / CSS 82.5 (4.8) 83.3 (7.0) 28.2 (3.4) 80.3 (5.4) 26.6 (2.4) 71.0 (5.1) 14.2 (3.4) 76.4 (8.6)
HTML5 / WebGL 67.4 (5.0) 64.2 (5.1) 25.8 (3.3) 78.7 (5.6) 16.6 (2.7) 62.6 (5.7) 16.2 (2.7) 76.7 (6.1)

Table 7: Mean and (std) of end-to-end latency (ms) on an iPhone 6, iPad Air 2, both running iOS 10.2.1, a Nexus 10 running Android 5.1.1, a MOTO
X2 running Android 6.0 and a Galaxy S7 Edge running Android 7.0; all using native application (Cocoa or Java), Qt, JavaFX and Unity3D toolkits in
addition to HTML5 applications running in Safari and using a standard canvas, CSS and WebGL.

APPENDIX
This appendix reports on measures performed on various
touch surfaces and keyboards.

Comparison of toolkits on touch devices
We compared different toolkits and Web applications on an
iPhone 6 and an iPad Air 2 both running iOS 10.2.1, a Nexus
10 running Android 5.1.1, a MOTO X2 running Android 6.0
and a Galaxy S7 Edge running Android 7.0. For each system,
we developed a native test application using Java or Cocoa
and alternative ones using Qt, JavaFX and Unity3D. We also
developed three HTML5/JavaScript test applications on Sa-
fari (for iOS) and Chrome (for Android): a standard HTML
canvas filling all the page; an HTML document using CSS;
and a WebGL scene using Three.js9.

All the test applications we developed were instrumented so
as to log repaint events in a file using millisecond or sub-
millisecond precision timestamps. Measures on Android de-
vices were performed with the Arduino directly connected
to them through a USB port and using a custom service that
logged its events into a file. By merging this log with the one
recorded by the test application in use, we were able to com-
pute not only the end-to-end latency but also the time between
the user action and the application drawing code (repaint). As
we were unable to directly connect it to the iPhone or iPad,
Arduino events were logged on an auxiliary computer when
testing these devices, which made it only possible to compute
the end-to-end latency10.

Our measures are summarized in Table 7. The ones obtained
with our iPhone 6 (53 ms) and iPad Air 2 (48 ms) are close
to what was obtained by Deber et al. with an iPhone 6 (52.3
ms) and an iPad mini (54 ms) running iOS 8.4.1 [7]. The
measures obtained with our Nexus 10 (76.0 ms) is also close
to the 73.2 ms they reported for a Nexus 9 running Android
5.1.1.

Overall, the observed end-to-end latency ranges from 48 to
276 ms depending on the device / system / toolkit, replicat-
ing results from the literature [14] where the tested systems
were not described. For the same toolkit, results can be quite
different between devices / systems. Our Qt application has a
9https://threejs.org/

10Synchronizing the clocks of the iOS devices and the auxiliary com-
puter would allow other computations, but we did not even try to go
that far.

high latency on the Nexus 10 for example (116.4 ms) but the
same application on the MOTO X2 exhibits 45.6 ms less la-
tency. The same is true for HTML5/Canvas. The general rule
we observe is that using a native language/toolkit is usually
the best choice for minimizing the end-to-end latency, while
HTML5/WebGL seems a good alternative for cross-platform
Web development.

For Android devices, the repaint columns of Table 7 show
the time between user action and the moment when the ap-
plication starts drawing in response to it. With the exception
of Unity3D, this “reaction time” was quite consistent across
toolkits for a given hardware and Android version, which fur-
ther hints at an important contribution of the “drawing and
refresh time” to end-to-end latency.

Measuring latency on trackpads and keyboards
We finally measured the latency of the MacBook Pro when
using its internal keyboard and trackpad, as well as external
Bluetooth ones (Apple Wireless Keyboard and Apple Magic
Trackpad 1). We again used the C++/Qt application. With
both the internal and the external trackpads, we were sur-
prised to measure high end-to-end latencies, above 230 ms
(see Table 8). After observing this, however, we hypothesized
the system waits for more than 150 ms upon touch detection,
presumably to determine if a gesture or other contacts will
follow before generating the event. To validate this hypoth-
esis, we repeated the measures by placing a first finger on
the trackpad and using second one to tap on the surface. The
time until repaint dropped drastically around 30 ms. We per-
formed similar measures with the keyboards. While we ex-
pected higher latencies with the wireless one, we found very
similar values between the two.

https://threejs.org/


Trackpad 1 finger Trackpad 2 fingers Keyboard
internal external internal external internal external

system 182.4 (25.6) 191.7 (34.5) 27.0 (3.2) 30.9 (4.1) – –
toolkit 182.9 (25.6) 192.3 (34.4) 27.5 (2.5) 31.4 (4.1) 24.2 (3.1) 23.0 (4.9)
repaint 184.3 (25.6) 193.6 (34.4) 28.7 (3.3) 32.8 (4.1) 25.6 (3.1) 24.4 (4.9)

end-to-end 235.2 (26.0) 245.3 (34.7) 80.5 (5.8) 91.2 (13.5) 78.2 (5.3) 77.1 (7.8)

Table 8: Comparison of end-to-end latencies (ms) between internal and external (wireless) trackpads and keyboards; for the trackpads when no finger
is already is contact and when one finger is already in contact.

Figure 4: Screen capture of an oscilloscope showing the signals of 1) the finger contacting the plastic case of a mouse (green), 2) the triggering of the
mouse button (red) and 3) the piezo response (blue), when pressing a computer mouse button. Additional details are provided in the subsection "Input
(finger touch/press) detection".
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