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ABSTRACT
We investigate how users touch arbitrary shapes. First, we per-
formed semi-structured interviews with a fifteen-shape set as prop
to identify touch strategies. Results reveal four main potential touch
strategies, from which we devised nine mathematical candidate
models. We investigate the ability of these models to predict human
behaviour in a controlled experiment. We found that the center of
a shape’s bounding box best approximates a user’s target location
when touching arbitrary shapes. Our findings not only invite de-
signers to use a larger variety of shapes, but can also be used to
design touch interaction adapted to user behaviour using our model.
As an example, they are likely to be valuable for the creation of
applications exposing shapes of various complexities, like drawing
applications.
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• Human-centered computing → Human computer interac-
tion (HCI); Empirical studies in HCI ; Touch screens.
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1 INTRODUCTION
Touch systems are populated with touchable objects, such as but-
tons, drawings, icons, links, or other widgets of many different
shapes. However, despite this abundance of “touchable” object ge-
ometries within our interfaces, there is little known about where
the users chose to touch them.

Being able to predict how users aim at arbitrarily shaped objects
can help designers choosing better shapes for interactive elements,
guide developers in implementing systems that better predict user’s
mental models and avoid errors, or bring to researchers insights
on human touch behavior and expand our understanding of basic
interactive mechanics. The quest for this knowledge is particularly
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true in the case of touch interaction because of the fat finger issue: as
the finger is occluding a part of the interface during the interaction,
it prevents users to aim precisely, thus encouraging them to guess
the intended touch location.

Previous work tends to indicate the geometry of an object im-
pacts how users attempt to touch it. For example, Grossman et al.
[13] observed that users adopt different strategies in function of
the shape of their target when pointing with a computer mouse.
Roudaut et al. [19] demonstrated that touch accuracy is affected by
the curvature of the touch surface. Finally, Holz and Baudisch [16]
suggest that users rely on geometrical features of their fingertips
when attempting to precisely touch a location indicated by a cross.

This paper extends this body of work, investigates user strategies
when touching arbitrary shapes on touch screens, and proposes a
model of users’ behavior when touching arbitrary shapes. First, we
performed semi-structured interviews with paper mock-ups during
which we asked participants to touch various shapes and to describe
their strategy in doing so. The analysis of their feedback revealed
four different strategies for touch input. In particular, we identified
behavior differences when the finger fully occluded the objects,
or when it was only partially occluded. Second, we conducted
a quantitative controlled experiment to empirically verify which
model is the most representative of touch behavior on arbitrary
shapes. More precisely, we designed a study with three particular
characteristics:

• We devised nine candidate mathematical models that
represent the four touch strategies highlighted in our first
qualitative study. We moved from 4 to 9 because each quali-
tative strategy could be interpreted in multiple quantitative
ways.

• We used a computational approach to automatically ex-
tract 15 arbitrary shapes out of a set of icons. We did this
instead of choosing ad hoc shapes to maximize the differ-
ence between the prediction of our models and increase our
chance to find a signal in the noise.

• We pick two sizes of shapes relative to the finger size,
more precisely 25% larger than the participants’ fingertips
or 25% smaller. This is quite atypical for touch studies which
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commonly use absolute sizes. We did this to verify our ob-
servations that different strategies were used depending on
whether the finger fully occludes the shape or not.

Our results showed that the center of a shape’s bounding box
best models how users touch it. This model is accurate even for
asymmetrical shapes, or shapes including holes. Our work shows
that designers can safely use a larger variety of geometries, without
changing the touch detection algorithm since the bounding box
model is used in many commercial systems. It also indicates that
feedback indicating the interactive areamay not be needed provided
that it includes a disc of 4mm radius centered on the center of
the shape’s bounding box. Our analysis also reveals that larger
shapes induced more touch variations (spread) but less offset. This
contradicts previous assumptions and observations that users align
their fingertips with the geometrical features extending from under
their fingers to point more systematically in the same locations
over several trials.

To summarize, we contribute to the first set of studies investigat-
ing touch accuracy on arbitrarily shaped objects and looking at how
users place their fingers onto them. Our contribution generalizes to
any touchable elements. One example is games that provide several
elements to be manipulated which are not icons; a shape inserted in
a drawing; or a partially occluded letter in a text document. Under-
standing how end-users touch those elements is of interest to the
community in that we can better model human behavior. Studies
looking at touch accuracy had a major impact on HCI and consumer
products. Our work extends them with arbitrary shapes and invites
designers to use more diverse geometries of shapes within UIs.

2 RELATEDWORK
We first define the type of study we used in this paper, i.e. touch
accuracy. We then discuss the current understanding of the topic,
including investigations of shapes with different geometries. We
finally discuss the difference between touch accuracy and pointing
studies.

2.1 Touch Accuracy Studies: Definition and
Metrics

Touch accuracy studies have seen an increase in interest since the
rise of touchscreen devices. Touch accuracy is indeed an intrinsic
problem on touchscreen devices because of the fat finger prob-
lem [18, 22]. In particular, the fingertip occludes the shapes and
makes selection difficult and error-prone on touchscreens. Such
studies are particularly focusing on the absolute precision of the
finger and are using tasks in which the participants must point at a
given object the most accurately possible without time constraints.
These studies particularly focus on where the users are placing
their fingers. They thus generally make use of an extra mechanism
to let participants confirm their final touch location via another
action such as using a foot switch [15, 16, 19].

Within those works, touch accuracy is defined as the combina-
tion of three values: the offset, the spread, and the minimum button
size [15]. Multiple targeting produces contact points, generally the
center of gravity of points in the contact area. All contact points
can thus be summarized as:

• Offset, the distance between the centroid of a cluster of
points and the target1 which is typically a single point such
as the center of the cross.

• Spread, the mean distance of all points in a population trial
from their centroid.

• Minimumbutton size, the diameter of the smallest circular
area that contains 95% of all point acquisitions.

Though the connection has not been made in the literature, the
minimum button size defined in touch accuracy studies relates to ef-
fective width [17] used in pointing studies (see subsection “Pointing
vs. touch accuracy studies”). The effective width is computed from
the standard deviation in the selection coordinates gathered over a
sequence of trials. Holz et al. [15, 16] used the 95% bracket of the
standard distribution instead for defining the minimum button size.
This is certainly because this value is closer to the actual meaning
of the term: the minimum button size guarantees that the touches
will be accurate 95% of the time. It means that accurate touch is still
possible with smaller buttons, but the frequency of errors is higher.

2.2 Touch Accuracy Studies: Current
Knowledge

2.2.1 Offset. Evidence has shown the existence of a systematic
effect that causes a touch device to sense at an offset from a target.
Benko et al. showed that the center of the contact area moves under
pressure, thus impacting the point detected by the hardware [3].
Forlines et al. found that touching a target using a flat finger angle
leads to larger offsets [12]. Wang and Ren found that finger pos-
ture and motion impact the size of the contact area [23]. Holz and
Baudisch further showed that differences in finger roll resulted in
offset [15].

2.2.2 Spread andMinimumButton Size. Vogel and Baudisch demon-
strated that for rectangular shapes (using the centroid as a target)
the minimum size of buttons was 10.5𝑚𝑚 [22]. In their experi-
ment using cross targets within a visible circle, Wang and Ren [23]
found that the diameter of circular shapes needs to be greater than
11.82𝑚𝑚 and square shapes need to be at least 11.52𝑚𝑚. Hall et al.
[14] reported minimums button size of up 26mm for rectangular
shapes. And Holz and Baudisch [15] reported a minimum of button
size of 15mm using cross shapes but that this value could be less if
correcting for finger yaw pitch roll. These authors investigated the
effect further [16] and observed that users touched a cross target
by placing a fixed point located on top of their fingernails over the
shapes. Users thus seem to use visual alignments. The same authors
also note that the disagreement about minimum button sizes of
these different studies cited above is possibly caused by differences
in study conditions (e.g. finger orientation).

2.2.3 Effect of Shape Geometry. Roudaut et al. [19] investigated
touch accuracy with different surface geometry. The authors looked
at touch on curved surfaces. They also used cross targets, but the sur-
face had different curvatures (concave to convex). They show that
concave surfaces induced larger spread and larger offsets. Bacim
et al. [1] looked at touch accuracy on deformable surfaces (also
using cross shapes) and showed that the shape of the surface affects

1For clarity we will refer as target when it is only one point.
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touch selection accuracy for both touch position and deformation
distance.

2.3 Pointing vs. Touch Accuracy Studies
Touch accuracy studies, our focus in this paper, are different from
pointing studies. Pointing studies focus on the speed-accuracy trade-
off in pointing tasks while touch accuracy studies focus on where
users aim at via a form of untimed docking task. The difference is
that pointing studies are interested in the combination of movement
and precision. Originating from Fitts’ law, there is today a multi-
tude of variations to encompass diverse interactive contexts [2, 17].
There is particularly one from Bi et al. proposing an adapted model
for pointing targets on a touchscreen [4].

Despite a large amount of pointing studies, few are looking
at target geometries. Chen [6] changed the shape of keys in soft
keyboard to increase typing speed. Grossman et al. [13] proposes a
Fitts’s Law model for 2D arbitrary shaped shapes acquired with a
mouse input device. The model can compute the index of difficulty
of any arbitrary 2D shape. The studies demonstrate the geometries
of the shape impact pointing time. For example, for a shape looking
like the “plus” sign, over 90% of selection points were within the
horizontal region of the target, the other being in the vertical region.
In a study performed with a pen as a pointing device, Cressman et al.
[7] demonstrated that subliminal geometries influence pointing
activity and suggested that users point differently depending on the
shape geometry. These studies seem to highlight an effect of the
geometry of the shapes, but they have only investigated it under the
light of pointing studies. Additionally, none of them have looked at
the particular case of touchscreen interaction.

3 PRELIMINARY STUDY
Our goal was to investigate how users think they touch 2D arbitrary
shapes and identify touch strategies. We took inspiration from Holz
and Baudisch’s papers [15, 16], and used interviews to learn about
users’ mental models when touching non-rectangular shapes. This
study focused on eliciting thoughts and qualitative data rather than
devising quantitative metrics.

3.1 Participants
We recruited 12 participants (7 female,𝑀 = 25.82 years, 𝑆𝐷 = 4.35)
from three different institutions (4 in UK, 4 in Singapore, 4 in France).
They were all regular touchscreens users. The study lasted about
30 minutes per participant. No compensation was given.

3.2 Task and Procedure
Participants were provided with a printout of the shapes on a sheet
of paper. They were instructed to touch the printout as if they were
trying to acquire each shape as accurately as possible and as if they
were on a touchscreen. We were very careful not to provide any
hints about the way the shapes could be touched to avoid biases.
We told them to act as if the shapes were on a touchscreen, but did
not provide any other direction and did not answer any question
that could influence their behavior. They were allowed to repeat the
process as many times as they wanted before deciding on the final
positioning of their fingertip on each shape. They were asked to
think aloud during the process. Once they settled, participants drew
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Figure 1: 15 shapes used in our qualitative study, green dots
represent the position indicated by participants.

a dot on the paper to indicate the precise location they thought they
would aim at when touching the shape. Then, we proceeded to a
semi-structured interview during which the experimenter inquired
about what part of the shapes they were trying to touch, why, and
the strategy they used.

3.3 Shapes
We selected fifteen shapes (Figure 1). To do so, a large set of can-
didate shapes was created from a google search with the keyword
“shapes set”. Note that we could have also picked from a set of
existing buttons but our contribution generalizes to any touchable
elements so we used a rather general set through the google search.
Each author individually reviewed the set and subjectively selected
a subset of ten items. Then, all authors discussed and decided on
a final selection of fifteen shapes. The selection criteria were to
vary geometries, curvature, and weight distribution (e.g. holes, or
asymmetries), to trigger different reactions, and discover various
touch strategies. This first experiment being exploratory, selection
criteria were broadly defined and left to interpretation. Generating
shapes systematically would have had few benefits at this stage. Fif-
teen shapes were included as a compromise between the diversity
of the shapes, and the duration of the experiment. We scaled them
so that their bounding box was 18mm wide, which is the average
width of a human index fingertip [8].

3.4 Design
The experiment included fifteen shapes (Figure 1). The order of the
shapes was randomized.

3.5 Results
We performed a thematic analysis [5] of the interviews. A first coder
labeled the feedbackwith initial codes to characterize amethod used
for touching each shape. Then, with a second coder, they discussed
and refined the codes, and identified the themes presented below.

Figure 1 shows the subjective touch location each participant
settled for each shape. Some patterns are noticeable from this data,
such as a tendency to ignore holes within shapes, or some tendency
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Figure 2: Number of times the different methods/themes
were mentioned by our participants (P1-P12).

to aim where the shape is the densest, such as the top of the bulb.
Participants feedback revealed four main strategies: “aiming at the
middle” (45.9% of the thematic analysis codes); “aiming where there
is the most shape” (29.4%), “aligning the fingertip with the shape
features” (16%) and “aiming at semantic features” (8.7%). Figure 2
gives more details about the diversity of strategies reported by
participants.

3.5.1 Aiming at the Middle (S1). The most used strategy was to
find the middle of the shape and aim at it. But the term middle
had several meanings for our participants as seen below with a
selection of comments.

Centroid: “I use the centroid of the shape” (P11 cloud).
Middle: “kind of the center of the shape even if it is empty”

(P1 trolley); “in the middle of the overall shape” (P2 chart);
“the overall center (P3 chart)”; “middle of it as if it was one
block without empty space” (P4 trolley); “right in the middle”
(P6 note); “center of the whole shape” (P7 bulb).

Blob (circle/ellipse): “in the middle, like it is like a blob, even
if there are empty parts (P2 box)”; “center of the blob, it
does not matter if the head is small, I am mentally filling
the empty space” (P5 man). “middle of the ellipse fitting (P9
dots)”; “center of circle fitting in the shape” (P12 note).

Bounding box: “center of the bounding box, in this case of a
single note I would target either center or the circle on the
note” (P7 note); “it needs to fitwithin the bounds of the shape”
(P12 bird). In some cases (bounding box or ellipse fitting),
we also observed that participants tilted their fingertip so
that it matches the shape.

3.5.2 Aiming where the shape is the densest (S2). The second most
mentioned strategy consists of locating the densest part of the shape
and ignoring voids.

Densest part of the shape: this was described by a range of
different words: “where the most of the volume is located (P1
hand)”; “the biggest part of the color” (P3 finger); “major area
of filling” (P3 pens); “wilder part” (P4 hand); “bigger area of
the bird, the more probably I will be in” (P4 bird); “the middle
of the key is where the volume is” (P4 key); “I try to go for
where there is more” (P5 hand); “bottom is heavier” (P7 box);
“better concentration of drawings” (P9 keynote); “center of
gravity” (P9 hand); “more matter” (P10 note); “where the

mass is the most” (P11 note); “in the chubby parts” (P12
bird); “round bits more filled” (P3 keys).

Ignore voids in the shape: participants chose to remove shapes
details: “don’t bother for the empty, I reach the top as there
is more surface” (P5 wifi); “I removed the pointy parts” (P5
chart); “I ignore the top ring as it is small” (P6 keys); “I don’t
mind the trolley handle” (P6 trolley); “Ignore the little details”
(P10 trolley); “the foot is not useful” (P10 keynote).

3.5.3 Aligning the Finger with the Shape Features (S3). The third
type of strategy observed relates to the action of aligning the fin-
gertip with a visible part of the shape. We observed different kinds
of alignment strategies corresponding to the following codes:

Finding fingertip shapes: “it looks like my fingertip, so the
top aligns with my nail” (P1 bulb); “I pressed where I was
sure my fingertip fits entirely as I can see the shape outside”
(P1 onoff); “in the middle it has a fingertip shape” (P2 onoff);
“it fits my fingertip and align on the top” (P2 wifi); “put my
fingertip in the middle of the circle” (P5 onoff); “I see the
shapes as a big blob and I try to cover my finger with it” (P6
pens). “I tilt the finger and cover as much as possible with
my finger” (P8 dots);

Finding axes and symmetry: “if I align the top of my finger-
tip on the top then I am sure the point will be inside” (P1
wifi); “if an axis is larger than my fingertip, I try to go at the
center of it (and the other is not as important)” (P5 keynote);
“Horizontally on the center, vertically in between the two
part we can identify” (P7 chart). “The horizontal rectangle is
more salient, and I can align” (P2 pens); “also align with the
vertical stroke as to make sure that it is touched” (P7 onoff);
“I use the center of the symmetry as guide” (P9 pens); “there
is a triangle, I aimed the center of it and align my finger on
it” (P4 pens). Looking at Figure 1, we see that participants
mostly aimed at the center of the symmetry if there is one
in the shape.

Not exceeding: participants also commented on using the
trick of covering the shape entirely so nothing exceeds from
under their fingertip: “I try to cover all the shape with my
finger, so everything is under” (P11 dots); “my goal is to
cover the whole shape with my finger” (P6 bird); “I can see
the isolated point at the top when my fingertip covers the
rest” (P10 dots).

3.5.4 Aiming at semantic features (S4). Our participants used se-
mantic properties within the shape to decide where to point: “point
around the heart of the man” (P2 man); “in the middle of the trolley
as it is where you put stuff” (P2 trolley)”; “the arrow attracted me,
so I put it at the top of the arrow” (P2 arrow). “The arrow attracted
me” (P3 arrow); “in the top, because it is where the light comes from”
(P2 bulb); “I feel bad to touch the head” (P3 man); “in the middle of
the bird body but not the head” (P3 bird); “I aim at the head as it
is more important” (P6 bird); “because I could not cover the whole
shape, I aimed at the head because it is more important than the
body” (P6 man); “Only the top because it seems more interactive”
(P8 onoff).
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3.6 Discussion
The first insight from our study is that participants used different
strategies to locate a point on the shape to aim at (the perceived
input point). This point is often indicated as the center of a particular
geometric element (75.3% of the time). We identified four different
types of strategies: (𝑆1) the participants searched for the center of
the shape contour; (𝑆2) 29.4% of participants focused on a particular
part, with the “most content”, and estimated its center. The two
other main strategies consisted of mentally fitting a simple shape
and assess its center, specifically (𝑆3) a rectangle, or (𝑆4) an ellipse.

We also found that participants used the visual features of the
shape extending from under their fingertips to aim more accu-
rately (16% of the time). Consequently, results differed whether the
finger partially or completely occluded the shapes. For example
participants with larger fingers, like P10 and P12, never mentioned
alignment strategies. This led to interesting insights: when the
shape was totally occluded participants aimed at what they per-
ceived as the center of the shape. However, when they could see
parts of the shape extending under their fingertip, participants also
made use of visible cues to align their fingertip and achieve better
precision.

Finally, we observed different behaviors when the shape had a
semantic meaning (8.7% of the time). For example, some participants
aimed at a meaningful location, such as the location of the heart or
the head.

3.7 Hypotheses and Research Questions
In light of observations from our first study and clues from related
work, we lay out the following research questions and hypotheses:

RQ: Among the four different strategies reported by our par-
ticipants (S1–S4), which one is the most representative of
touch accuracy on shapes with arbitrary geometries?

H1: The spread of input points is smaller when a shape is only
partially occluded shapes during touch.

H2: Like in previous studies, a systematic offset should be
observed. However, this offset does not vary with target size.

H1 comes from the findings that participants align their fingers
with visible shape features extending from under their fingers as
they come into contact. By aligning their finger with visible fea-
tures, we hypothesize users can be more consistent. H2 originates
from previous work on rectangular targets [3, 12, 15, 23], and our
preliminary study.

4 EXPERIMENTAL DESIGN PREPARATION
Designing an experiment to test our hypotheses is not straightfor-
ward because: (1) we need to mathematically model the qualitative
strategies extracted from our preliminary study; (2) we need to
select a set of arbitrary shapes to study which maximize the dis-
tance between those mathematical models; (3) we needed to choose
different size of arbitrary shapes to simulate the condition of "oc-
cluding completely the shape vs. not". We explain these three steps
in details, i.e. how we generated nine mathematical models to reply
to (1); how we used a computational approach to reply to (2) - this
approach maximized distances between model predictions to gen-
erate 15 shapes (Fig. 4); how we used two different sizes of shape

that are relative to the finger (ratio of the index fingertip 75% and
125%), which is atypical from conventional touch studies.

4.1 Generating seven mathematical models
from the qualitative touch strategies

The strategies we identified in the first study are combinations of
participants’ descriptions of their mental processes. They are not
algorithms with sequences of specific operations. Therefore, several
interpretations lead to several distinct implementations (or models).
We describe below our implementations, that we coded with the
Python version of OpenCV 3.02.

4.1.1 Contour Centroid. With Contour Centroid strategy, partici-
pants took into account the boundaries shape. The variations lie in
the way they considered the space around the shape. Our two im-
plementations of this strategy compute the centroid of a contour as
opposed to the whole area of the shape. The two variations consist
in considering (𝑆1𝑎) the contour of the shape itself (findContours,
[21]), or (𝑆1𝑏 ) the convex hull of the shape (convexHull, [20]).

4.1.2 Large Cluster Centroid. Participants who followed this strat-
egy focused on parts of the shape with more pixels. In other terms,
they aimed at the biggest clusters of pixels. (𝑆2) we implemented
this strategy by computing the centroid of dark pixels, that is to
say, the average coordinates of these pixels. Dense clusters of pixels
pull the centroid in their direction.

4.1.3 Fitting Rectangle. Some participants attempted to align body
parts, a finger or a nail, with the shape. The strategy we associated
consists in fitting a rectangle to the shape and we propose two im-
plementations. (𝑆3𝑎) computes the center of the bounding box of the
shape (boundingRect). The rationale for this is that it matches the
way shape pointing is typically coded. (𝑆3𝑏 ) matches the minimum
area rectangle and allows for rotations (minAreaRect). Note that the
boundingRect s aligned with the x and y axes. The minAreaRect
s smaller because it allows rotations.

4.1.4 Fitting Ellipse. This is a variation of the previous one. (𝑆4𝑎)
consists of searching the minimum enclosing circle of the shape
(minEnclosingCircle). It refers to a simplified view of the finger-
tip. (𝑆4𝑏 ) is a variation of (𝑆3𝑏 ) that fits the shape with an ellipse.
The implementation uses the fitEllipse function [11]. This algo-
rithm requires at least five points, therefore this strategy cannot be
computed with the simplest shapes.

4.2 Generating 15 shapes maximizing distance
between mathematical models

To select shapes to study, we choose to create a subset of shapes
maximizing the distance between our models, which in turn in-
creases the chance to find the signal within the noise. We were
indeed constrained by the intrinsic limitations of experimental de-
sign and statistical analysis, and only include a fixed number of
shapes while also maintaining enough repetitions and factoring in
2 sizes. So to test our hypotheses we chose a systematic shape gen-
eration to ensure the difference between the seven models would
be maximized.

2The source code will be made available when this work will be published

https://docs.opencv.org/3.4/d3/dc0/group__imgproc__shape.html#ga17ed9f5d79ae97bd4c7cf18403e1689a
https://docs.opencv.org/3.4/d3/dc0/group__imgproc__shape.html#ga014b28e56cb8854c0de4a211cb2be656
https://docs.opencv.org/3.4/d3/dc0/group__imgproc__shape.html#ga103fcbda2f540f3ef1c042d6a9b35ac7
https://docs.opencv.org/3.4/d3/dc0/group__imgproc__shape.html#ga3d476a3417130ae5154aea421ca7ead9
https://docs.opencv.org/3.4/d3/dc0/group__imgproc__shape.html#ga8ce13c24081bbc7151e9326f412190f1
https://docs.opencv.org/3.4/d3/dc0/group__imgproc__shape.html#gaf259efaad93098103d6c27b9e4900ffa
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Note that another solution is to use shapes used in former work
such as Grossman et al. [13], investigating mouse pointing for non-
rectangular shapes. However, almost all of these shapes have one
or more symmetries (Figure 3). Therefore they are special cases,
and are not suitable enough to distinguish between the models:
the perceived center for the strategies we identified are close from
another. This set is thus not ideal to investigate our touch strategies.
Besides, our study focuses on touch, which involves a larger error
spread than with the mouse, thus increasing the necessity to have
shapes with different input points for each model.

We selected 15 shapes (Figure 4) whose geometries were different
enough so that the input points for each of our touch metrics would
be further apart from each other. The reason behind this choice was
to increase the chances to validate or invalidate the touch metric as
the finger touch accuracy is known to be low [15]. We implemented
a script that computes the distance between the output of our
models. Our script works in three steps. First, it normalizes each
shape to a standard size ([0 − 1]). Second, it computes the output
of each of our models for each shape. Third, it extracts the shapes
that maximize the Euclidean distance between those input points.
To do so, the script computes the average of the Euclidean distance
between the outputs of each pair of strategies for each shape. More
specifically, given 𝑐1, . . . , 𝑐7 the centers predicted by our seven
strategy implementations for a specific shape, and 𝐶 (7, 2) = 21 the
number of possible pairs of models, the metric is:

𝑚 =

∑
1≤𝑖< 𝑗≤7

√
(𝑐𝑖 .𝑥 − 𝑐 𝑗 .𝑥)2 + (𝑐𝑖 .𝑦 − 𝑐 𝑗 .𝑦)2

𝐶 (7, 2)
The average of the fifteen shapes selected by this process is 9.02 %
(min = 0.69 %, max = 17.6 %).

The first part of our script takes multiple square shapes as an
input, and thresholds the pixels so that they are either considered
as shape or background. Then it computes the x-y coordinates of
the input point for each models. We ran this script on a set of 374
shapes found on traditional user interfaces (a random selection from
google image using “shapes set” as the keyword). The second part
of our script loads the CSV file generated and computes the average
distance between each model by running pairwise comparisons.
This script allows us to rank our shapes according to the differences
between each model. From here, we extracted the fifteen shapes
(Figure 4), which maximize the average distance between model
outputs. Figure 5 shows the mean distance between the strategies
for all the shapes we investigated. For many, the output of our
models tended to overlapped. We picked the 15 shapes with the
least overlap, in the far right tail of this distribution.

4.3 Choosing two relative size of shape instead
of absolute ones

Most studies looking at targeting, pointing, or touch make use of
different shape sizes. These sizes are normally absolute, i.e. they
can be given as a measure in millimeters, which does not vary
between participants. However, in the case of our study, we are
highly interested in comparing phenomenon where the finger oc-
cludes totally or only partially a shape. In such a case, the size of the
participant’s fingertip becomes a confounding factor that must be
treated separately. This is the reason why we chose relative shape

sizes that were 75% and 125% of the distal phalanx width of the
index fingertip of each participant. It thus means that we measured
the participants’ fingertips before starting the experiment. This
measure was used to compute the two sizes of shape that were thus
different for each participant. What was constant among partici-
pants was the two-scale factors. We thus report the size of finger
size later in the experiment (Figure 6).

Note that using relative size shapes is not common but was
needed to test our hypotheses that users have different strategies
depending on whether or not the features would be visible from
under the finger. Using a fixed size like in traditional studies would
introduce a confounding factor (e.g. an 8mm shape be invisible
under a large finger but not under a small one). This also explains
why we then normalized our data (further explained in 5.6), i.e we
scaled the participants’ fingers and input to the same standard size
of a finger to compare the results.

5 CONTROLLED EXPERIMENT
We gathered touch data on 15 arbitrary shapes and two relative sizes.
We then compare this data with our models’ predictions to identify
the one best able to predict pointing behavior. Note that this experi-
ment may misleadingly seem related to well-known speed-accuracy
results and Fitts’ law [10, 17] that show users point faster on larger
targets as less accuracy is required. Despite similarities, we did not
implement a Fitts task. We did not investigated motor control, but
the mental model and user strategies. We measure spread that may
result from different strategies or inconsistent interaction, not accu-
racy as a function of movement speed. Participants were explicitly
told to use all the time they needed.

5.1 Apparatus
Like in previous work [15] we used a capacitive sensing technology
to detect touches. We used a Samsung Galaxy S3 Tab, with a 9.7"
capacitive touchscreen to display the shapes and record the user
input. The tablet has a resolution of 2048×1536 px, thus a pixel
width is 0.096mm. We chose this tablet because unlike Apple de-
vices, there is no automatic correction of the touch input, i.e. it is
computed as the centroid of the contact area. We could not find
information about how the capacitive grid technology underlying
the hardware we used treated the data. Therefore, to ensure the data
was consistent and to remove potential noise from the hardware,
we placed the shape always in the same position on the touchscreen.
Note that we choose not to use a pen as Holz and Baudisch [16]
suggest users use features of their finger when touching precisely
a target.

5.2 Task
During each trial, participants used their dominant hand to press a
start button at the bottom of the screen before touching a shape.
Following previous approaches [9, 12] participants had to validate
the touch input acquisition using an external action: tapping one
of the two buttons displayed the right or left side of the interface
with their non-dominant hand (Figure 6). To prevent repeated me-
chanical movements, the distance between the start button and the
shapes was randomized. The location of the shape on the screen
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Figure 3: Shapes used in Grossman et al.’s pointing with a mouse study [13].

Figure 4: Shapes systematically selected by our script maximizing distances between model predictions.
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Figure 5: Distribution of the mean distance between strate-
gies for all the shapes used in our extraction process. We
used shapes at the far right to maximise the distance be-
tween strategies.

was randomized with the start button position chosen in a 50x50
px around the center of the screen.

5.3 Procedure
With the help of the experimenter, participants measured their in-
dex fingertip by positioning it on a user interface displayed on the
tablet (Figure 6 a). The fingertip was measured from the first joint
fold to the top, and from left to right. Then, participants opened
the trial interface (Figure 6). They were allowed to take breaks
between trials and were instructed to be as accurate as possible
and to take all the time they needed to decide on the most relevant
touch input point. To avoid any bias, we provided no direction on
how to touch the shapes, for example how to deal with geometric
specificities like holes. Due to the simplicity of the task and the
speed requirements, no practice trials were required. The experi-
ment lasted approximately 30 minutes per participant. Note that
we provided instructions to ensure that the task in this experiment
was understood the same way as in our initial experiment. In both
studies, participants were told to take as long as they needed.

5.4 Participants
A total of 12 right-handed volunteers participated in the experiment
(5 females, 18-33 years-old, M = 20.6, SD = 4.1). The finger sizes of
our participants are shown in Figure 1. The mean of the fingertip
height was 9.4mm [min 8.4 px max 11.1 px] (SD=1.0mm) and the
mean of the fingertip width was 6.1mm [min 5.1mm, max 7.0mm]
(SD = 0.6mm).

5.5 Experimental Design
We used a repeated-measures within-participant design with two
independent variables: Shape (15 values, see Figure 4) and Size
(ratio of the index fingertip at 75% or 125%). The size was included
to control and examine the effect of shape occlusion during touch.

As a result, it is defined as a factor of the participant’s fingertip
instead of absolute values. Shape and size orders were randomized.
We recorded 15 shapes × 2 sizes × 18 repetitions = 540 trials per
participant.

5.6 Results
We removed outliers more than three standard deviations away
from themean (0.34% of the data). Aggregated data points are shown
in Figure 7. This figure helps to see the trends. We first look at how
consistent participants were by examining the spread of the touch
location. Then, we investigate our models, and how efficient they
are at predicting our participants’ behavior. Because the effective
sizes of shapes are proportional to the size of the participant’s
fingertips, we measured a normalized input point between 0 and 1
rather than pixels or millimeters. For example, a participant input
located at (0.5, 0.5) would be in the middle of the shape’s bounding
square, and negative values or values larger than 1 indicate location
outside this square.

5.6.1 Spread. Spread measures how far apart the points are. We
calculated it as the average normalized distance of each input point
to the mean touch location. We applied a cube root transform to
normalize its distribution (confirmed by Shapiro-Wilk test). We
applied Greenhouse-Geisser sphericity correction when needed,
correcting both p-values and degrees of freedom.

We found a main effect of Size on spread (𝐹1,11 = 74.8, 𝑝 < 0.05)
but none for Shape nor interaction Shape × Size. 75% sized shapes
(M = 0.1686, 95% CI [0.1646, 0.1726]) had significantly less spread
than the 125% ones (M=0.1951, 95% CI [0.1905, 0.1998]). If we take
that the human size averages between 16–20mm [8] it means that
the spread with 75% sized shapes is around 2.7mm and 3.4mm,
while it is between 3.12mm and 3.9mm for 125% sized shapes. This
goes against our assumption that shapes extending from under the
fingertip would help the participants to be more consistent in their
touch strategy (by letting them align their fingers with the visual
clues extending from under their fingertip). On the contrary, the
results show that large shapes had larger touch variation, most
likely because the larger size required less precision.

5.6.2 Model Precision. Model Precision measures how efficient a
model is at predicting users’ behavior. It is calculated for each of our
seven models as the average normalized distance from input point
to model prediction. A non-parametric Friedman test was used to
compare the precision of the models. Fig. 8 shows the distance-to-
input of each model’s prediction. Overall, the bounding box model
best-modeled participants’ input both for 75% and 125% shapes.
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a) b) c) d)

Figure 6: (a) at the beginning of the study, the participants’ fingertips weremeasured on the tablet; a trial started by pressing (b)
a start button before pressing (c) the shape; the participants confirmed the location on the shape by pressing the side buttons
with their non-dominant hand.

Table 1: Participants fingertip sizes as measured at the beginning of the experiment.

Participant ID P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12
Fingertip Height (mm) 21 17 17 17 18 20 22 18 17 18 21 18
Fingertip Width (mm) 13 12 11 10 11 11 12 11 13 12 14 13

 8 

to this size. It means that performing statistical test on the 
distance recorded in pixel or mm is biased as we would 
compare value that are on many different scales. To make the 
data set comparable we first had to normalize all the points: 
the square box in which was sitting the shape was a unit, i.e. 
a touch located at (0.5, 0.5) would be in the middle of this 
square while negative values would be a touch outside of the 
square. Note that using Table 1 it is easy to derive the actual 
size of shapes for each participant. Doing this normalization 
step means that our data are all normalized as if the fingers 

were of the same size. It thus does not introduce confounding 
factors in the experimental design. 

Spread 
For each condition, we computed the distance of each point 
to the mean points per condition, in order to have a measure 
of spread, i.e. how far apart the points are. We performed a 
cube root transform on the spread to make it normally 
distributed (a Shapiro-Wilk test confirmed it). We applied 
Greenhouse-Geisser sphericity correction when needed, 
which corrects both p-values and degrees of freedom.  

 
Figure 6 Aggregated and normalized results showing where participants aimed on the different shapes and depending on their sizes. 
Each point represents a participant. 

We found a main effect of Size on spread (F1,11=74.8, 
p<0.05) but no significant effect for Shape nor interaction 
Shape × Size. 75% sized shapes (M=0.1686, 95% CI 
[0.1646, 0.1726]) had significantly less spread than 125% 
sized shapes (M=0.1951, 95% CI [0.1905, 0.1998]). If we 
take that the human size averages between 16-20mm [9] it 
means that the spread with 75% sized shapes would be 
around between 2.7mm and 3.4mm, while it would be 
between 3.12mm and 3.9mm for 125% sized shapes. This is 
quite surprising and goes again our assumption that shapes 
extending from under the fingertip would help the 
participants to be more consistent in their touch strategy (by 
letting them align their finger with the visual clues extending 
from under their fingertip). On the contrary the results show 
that large shapes had larger touch variation, possibly because 
participants were less worried about missing the point they 
first aimed at. 
Minimum button size 
We measured the size of a circular button containing 95% of 
the touch points collected in our experiment and for each of 
the conditions. Considering that a human index fingertip is 
between 16-20mm [9], we found a spread between 12.8-
16mm for 75% sized shapes and 13.5-16.8mm for 125% 
sized shapes. These values are arguably in similar ranges 
than previous work that reported: 10.5mm for rectangular 
shapes [19]; 11.82mm for circular and 11.52mm  for square 
[20]; 26mm for rectangular shapes [13]; and 15mm for cross 

shapes [15]. However, our results suggest there may be a 
correlation between the size of the shapes and the spread, 
particularly when the shapes are full and with no apparent 
center. 

Offset and touch strategy 
Traditional touch accuracy studies would look at the offset 
computed as the distance to the center of the shape. Here we 
do not have a center like with cross shapes. We were thus 
interested in understanding which “center” the participants 
aimed at. We thus checked if one of our identified touch 
strategies was more representative from the users’ behavior. 
We computed the distance-to-strategy from each input point 
to our seven different touch strategies. The data presented a 
right skewed distribution, but the cube root transform could 
not normalize all the metrics. To avoid further complex data 
transformations, we thus used non-parametric tests, 
Friedman, in order to compare the touch strategies.  
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Figure 7: Aggregated and normalized results showing where participants aimed at the different shapes depending on their
sizes. Each point represents a participant.

However, no prediction was perfect, and we observed a systematic
bottom-directed deviation from the input occurring for each model.
A similar systematic offset was already observed in previous work
and corresponds to the direction of the fingertip spreading out onto
the surface.

We used a Wilcoxon sign rank test using Bonferroni correction
to compare model predictions. There was a statistically significant
difference in precision depending on size 𝜒2 (6) = 2816.52, 𝑝 < 0.05:
75% shapes had a larger offset than 125% shapes, most likely due
to greater occlusion. We found that all were significantly different
except the (𝑆4𝑏 ) ellipse vs. the (𝑆1𝑎) polygon center; the (𝑆1𝑏 ) convex

hull vs. the (𝑆3𝑏 ) oriented box; the (𝑆4𝑎) circle vs. the (𝑆3𝑏 ) oriented
box. We also checked that the same effects occurred for each shape
size condition independently. Our results thus demonstrate that
the bounding box model is the most representative of the users’
behavior across the two sizes of shapes used in the study, and across
all shape geometries.

5.6.3 Summary. We found an answer to RQ in that the bounding
box model is the most representative of touch on arbitrarily shaped
shapes. We did not find any significant differences for the types
of model used depending on the size of the target. We invalidated
H1 in that the spread is larger with large shapes contrary to what
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Figure 8: Distance from each model prediction to the input
points with the two different shape sizes. To have the real
size multiply the unit by the fingertip size (e.g. 16mm to
20mm).

we assumed, suggesting users may not align their finger with the
shape to make their repetitive hits more accurate. Like previous
work, we observed a systematic offset (H2) but found this offset
was further away from the bounding box center when the shapes
were totally occluded compare to partially occluded.

6 DISCUSSION
We discuss here our findings as well as our limitations and future
works.

6.1 Bounding box model is the most
representative

Our results identify the bounding box model as the most representa-
tive. This suggests counter intuitively that the geometries of shapes
can be ignored, which includes complex shapes like the one often
found in games or drawing applications. In the context of icons
or buttons, this result means that designers that are not secluded
to rectangular shapes and instead can make use of many different
geometries. Visual feedback indicating the touchable area does not
even seem necessary as users are particularly efficient at mentally
determining the center of the bounding box.

However, contrarily to pointing on shapes with a mouse and
a cursor, we observed users tend to ignore holes or voids within
shapes when touching shapes. Grossman et al. [13] showed that
users tend to avoid holes when pointing on a shape with a mouse.
Our experiment suggests that, with touchscreen, users tend to see a
shape as a whole and to perceive it contained within a box. Whether
this is an intuitive or learned behavior remains for future work.
These results have particular consequences for user interfaces that
would expect users to select a shape through another one, as is
sometimes encountered in slide builders, or drawing applications.

6.2 Spread is larger but offset is smaller on
partially occluded shapes

Participants appeared to be significantly more precise when touch-
ing shapes completely occluded by their fingers. This larger spread
on larger shapes suggests that users do not make use of the visible

features of a shape when touching it. This explicitly goes against
the perception of our participants as reported in our first study. We
found a correlation between the size of the shape and spread: our
results show a confidence interval of [12.8–16mm] for input spread
on 75% sized shape, and [13.5–16.8mm] for 125% sized shape. This
is arguably similar to the range already observed in the literature
with rectangular shapes, but higher than with the results reported
when tapping on crosses (15mm) [16]. One explanation could be
that as participants have more room to place their fingers on larger
shapes, they struggle to identify one particular target. This tends to
indicate that the larger a shape is, the more difficult it is to maintain
consistency when touching it. On the contrary, crosses as used in
previous studies exhibit a precise target and leaves no room for
interpretation. One other reason could simply be that participants
have less chance to miss the shape, and as a result, make less effort
and demonstrate less precision when selecting a target.

On the other hand, we found the offset was larger when the
shape was completely occluded by the participant’s finger. In other
terms, the distance from the finger to the center of the bounding
box was smaller on shapes that were only partially occluded. This
result gives designers more precision when attempting to predict
how users will touch shapes depending on the size of the shape,
and in particular how occluded it will be.

6.3 Preliminary Study Results versus
Controlled Study Results

The verbalization of participants revealed different strategies are
used to choose how to touch shapes of different geometries and
sizes. Both our preliminary study and controlled study show that
participants tend to aim at the center of a shape. However, our
controlled study did not confirm that the weighted centroid (ac-
counting for 29.4% of the comments in our preliminary study) was
a prominent strategy with a touchscreen. On the other hand, partic-
ipants of our preliminary study indicated they attempted to align
their fingers with non-occluded features of the shape. However,
our controlled study does not confirm this behavior, as shown in
our input spread analysis and it is unclear why we observed this
disparity. Consequently, it appears users are often mistaken in the
strategy they think they use to interact with touch surfaces: while
users tend to believe they make use of advanced touch strategies,
they do tend to simply aim at the center of their target.

Another explanation could be that despite our optimization algo-
rithm, the set of shapes we used did not provide enough variations.
It is also possible that users do rely on specific strategies, but show
little consensus between each other. As a result, the center emerges
as a reliable one-fits-all model, but it may be possible to develop
more precise per-user models. Finally, it is also possible that when
using a touchscreen, our participants reverted to behavior learned
from their past experiences. Further studies are needed to investi-
gate these hypotheses.

6.4 Limitations and Future Work
Our study only focuses on two relative shape sizes. These sizes were
chosen to investigate the effect of the shape’s occlusion by the finger:
25% smaller and 25% larger than the participant’s index finger.
However, the effect of larger or even smaller shape sizes remains
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unclear. For example, how do people aim at sizes up to four times
the size of their finger? Do they make use of any particular strategy,
still aim at the middle, or go for the closest point regardless of its
location within the shape? Do they still ignore holes? With large
shapes, it is also possible that certain zones become more salient
than others, leading users to a different strategy that they would
have used with a smaller shape. This paper opens opportunities to
further explore these research questions.

One possible limitation of our studies is that in study 1 we used
paper while in study 2 a touchscreen. This is coherent with standard
research methodologies using mock-ups for initial observations
and our second experiment builds on and validates our preliminary
findings. But, like in other research, there are certain limitations of
using paper mockups which are low-fidelity systems, and further
investigations could be needed to check whether the support used
prime participants into a particular action such as pointing explicitly
within the bounding box. One extension of this work could be to
compare two sizes of shapes with these two different apparatus to
check if there is a difference in behavior.

The choice of shape we used in our studies is also critical. Our
goal was to pick shapes that were ecologically valid, i.e. that we
can find on various interfaces. But we also needed to find shapes
different enough. These double constraints led us to pick from a
shape set found online combined with our automatic extractor,
which we believe is a good trade off. However, it is possible that
some unusual types of shapes, not considered in the present work,
lead to different results. Additionally, the metric we used to select
our shapes in study 2 was sufficient to spread centers predicted by
the models we implemented sufficiently far apart for some shapes.
Other metrics may lead to other results, suggesting other shapes
that favor another strategy. This research topic is fundamentally
incremental, and we hope it will stimulate future studies.

In addition to the points above, our future works also include
other directions. First, our results exclude the case of shape with
semantics which we think would be relevant to study. We also
would like to study shapes with more extreme geometries (e.g. with
one axis disproportionate) to see if this had any effect on touch
accuracy. Our work also only focuses on black on white shapes
and adding colors, patterns and effects is a direction we are keen to
explore. Finally, other factors would have also been interested to
study, e.g. the physicality of targets.

Finally we would also like to note that we used the term “arbi-
trary shapes” in this paper and during the studies rather than “icons
of arbitrary shapes”. We did this to avoid priming the participants
into understanding those shapes as widgets with a bounding box.
In simple words our work makes a valuable contribution in con-
firming that users perceive icons as a box and designers do not need
to worry about the shapes, but of course further studies need to
be done to understand if our results apply to any arbitrary shaped
interactive elements.

7 CONCLUSION
This work contributes to understanding touch on interactive sur-
faces. We investigated how the geometry of shapes impacts touch
input. From the initial feedback of participants, we emitted hypothe-
ses, extracted potential touch strategies, and built corresponding

mathematical models. During our preliminary study, participants
reported leveraging visible shape geometries to align their fingers,
but our controlled study instead showed they tended to ignore shape
geometries, and simply aim for the center. Indeed, a bounding box
model best fitted their behavior. These studies, expose relevant
insights that expand our understanding of human touch behavior
and can help designing touchscreen interfaces.

Rectangular targets on rectangular displays have been the gold
standard since the 80s, but this trend is increasingly challenged as
designers explore novel platforms and newways to interact with our
information systems. User interfaces are not restricted to flat and
rigid surfaces anymore. Wearables, virtual reality, or even organic
user interfaces are all examples of such systems. Understanding
how fundamental interactions, like touch, operate in these new
interactive spaces is essential for the success of these platforms.
By doing so we can gather empirical evidence, and create human
models that can guide designers when creating new interfaces.
This is ambitious; the space is large, and characterizing touch on
different topologies is complex. This research is the first step in
this direction (flat surface, geometrical shapes), and we believe it
can inspire other researchers to expand our knowledge with more
diverse topologies.
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